CAN转以太网适配器数据手册

智能 CAN 转以太网适配器

产品数据手册

目 录

Ħ	录		2
第-	一章	产品简介	3
		产品概述	
		性能指标	
		应用领域	
		订购信息	
		技术支持与服务	
笙-		硬件连接	
711-		硬件接口描述	
		系统连接	
		总线终端电阻	
笛:		参数设置	
カ-		配置软件	
	3.1		
		3.1.1 软件操作	/
		3.1.2 设备参数描述	8
第四	四章	通信转换规约	10
	4.1	转换格式规约	10
	4.2	设备通讯示例	11
	4.3	多机通讯配置	14

智能 CAN 转以太网适配器

产品数据手册

第一章 产品简介

1.1 产品概述

MCANET-100T/200T 高性能CAN转以太网适配器,集成了一路CAN接口(MCANET-100T)或二路CAN接口(MCANET-200T)和EtherNet接口以及TCP/IP协议栈,用户利于它可以轻松完成CAN-bus 网络和EtherNet 网络的互连互通,进一步拓展CAN-bus 网络的范围。

MCANET-100T/200T CAN转以太网适配器每路CAN通道都集成完全的电气隔离保护、防浪涌保护,抗干扰能力强,是一款性能稳定、通讯可靠的CAN以太网转换器。

MCANET-100T/200T 适配器的转换效率达到 6500 帧/S(1Mbps 下 CAN 扩展帧),适合 CAN 的低速到高速的所有应用。

1.2 性能指标

- > 32位120M处理器,内嵌实时操作系统
- > 流量6500帧/S(1Mbps下CAN扩展帧)
- > CAN-bus接口采用电磁隔离,隔离电压: 2.5KV
- ▶ 10M/100M以太网接口(RJ45), 2KV电磁隔离
- ▶ 支持协议包括ETHERNET、ARP、IP、ICMP、TCP、UDP、DHCP、KeepAlive等
- > 可使用配置软件对CAN和以太网的工作参数进行设定
- ➤ CAN2.0A和CAN2.0B协议
- > 支持1-2路CAN控制器,每路均可单独控制
- > CAN控制器波特率在5Kbps~1Mbps之间可选
- 单路总线上最多可接110 个节点,最长通讯距离10 公里;
- > 9-40V宽电压输入,并带有浪涌、过流、反接保护
- ➤ 工作温度: -40°C~+85°C

智能 CAN 转以太网适配器

产品数据手册

▶ 存储温度:-55℃~+85℃

▶ 尺寸: 108mm*82mm*28mm

1.3 应用领域

- ▶ CAN-bus产品开发
- > CAN-bus数据分析
- ➢ CAN-bus主从式网络
- ▶ CAN-bus教学应用
- ▶ CAN-bus网关、网桥

1.4 订购信息

型号	工作温度	说明
MCANET-100T	-40°C∼+85°C	单通道 CAN 转以太网适配器
MCANET-200T	-40°C∼+85°C	双通道 CAN 转以太网适配器

1.5 技术支持与服务

一年免费维修、升级,终身维修。

支持邮箱: embededperfect@163.com

支持网站: http://www.embedded-soc.com

智能 CAN 转以太网适配器

产品数据手册

第二章 硬件连接

2.1 硬件接口描述

MCANET-100T/200T CAN转以太网适配器集成1-2路CAN 通道,每一路通道都是独立的,可以用于连接一个CAN-bus 网络或者CAN-bus 接口的设备。其接口布局如下:

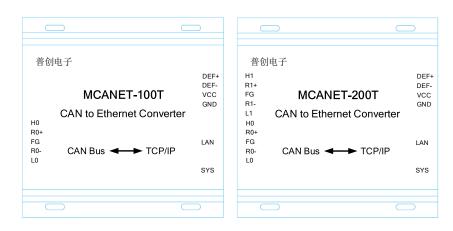


图 1 MCANET-100T/200T CAN转以太网适配器外围端子

2 路CAN-bus通道由**1个10 Pin接线端子**左边引出,右边为一个**4 Pin接线端子**(配置和电源输入),一个标准的RJ45以太网接口。引脚得详细定义如表格 1 所示。

引脚	端口	名称	功能
1		L0	CANLO 信号线
2		R0-	终端电阻(内部连接到L0)
3	CAN0	FG	屏蔽线 (FG)
4		R0+	终端电阻(内部连接到H0)
5		Н0	CANHO 信号线
6		L1	CANL1 信号线
7		R1-	终端电阻(内部连接到L1)
8	CAN1	FG	屏蔽线 (FG)
9		R1+	终端电阻(内部连接到H1)
10		H1	CANH1 信号线
1		GND	电源输入负端
2	配置	VCC	电源输入正端(9-40V直流)
3	HL.EL.	DEF+	出厂配置恢复端
4		DEF-	出厂配置恢复端

表格 1 MCANET-100T/200T CAN转以太网适配器的信号分配

智能 CAN 转以太网适配器

产品数据手册

DEF+、DEF-为出厂配置恢复端,用户可以在未供电时使用金属导线连接DEF+、DEF-端,使其短路,然后上电,5 秒钟后再去掉供电,去掉连接的金属导线,使DEF+、DEF-端开路,这时设备恢复出厂时的设置。

2.2 系统连接

MCANET-100T/200T CAN转以太网适配器和CAN-bus 总线连接的时候,仅需要将CANL 连CANL, CANH 连CANH 信号。CAN-bus 网络采用直线拓扑结构,总线的2个终端**需要安装或使能内部120Ω的终端电阻**;如果节点数目大于2,中间节点不需要安装120Ω 的终端电阻。对于分支连接,其长度不应超过3米。CAN-bus 总线的连接见图 3 所示。

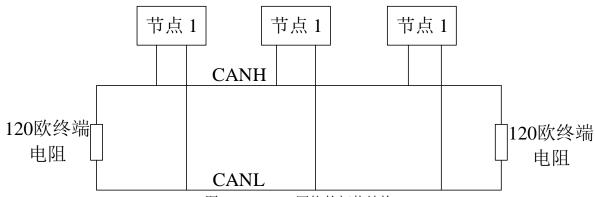


图 3 CAN-bus 网络的拓扑结构

2.3 总线终端电阻

为了增强 CAN 通讯的可靠性,CAN 总线网络的两个端点通常要加入终端匹配电阻,如图 3 所示。终端匹配电阻的值由传输电缆的特性阻抗所决定。例如双绞线的特性阻抗为 120Ω ,则总线上的两个端点也应 120Ω 终端电阻。当 MCANET-100T/200T CAN 转以太网适配器位于 CAN-bus 网络的一个端点上时,需要启用 120Ω 终端电阻,即在 "R一"引脚和 "R+"引脚接入终端电阻或将对应红色的拨码按下。

6

智能 CAN 转以太网适配器

产品数据手册

第三章 参数设置

3.1 配置软件

运行MCANET-100T/200T Config,进行适配器的工作参数设置。软件界面如下图所示:

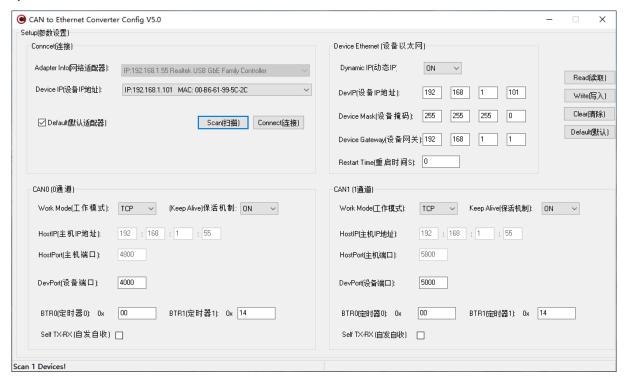


图4 MCANET-100T/200T配置软件

注:上述参数就是出厂配置的默认参数。

3.1.1 软件操作

- 1) Scan 按钮: 通过广播包检测连接到网络模块。
- 2) Connect 按钮: 连接扫描出的模块。
- 3) Read 按钮: 会将当前内部的参数都读出并显示。
- **4) Write** 按钮:将界面上的参数写入到设备中。这些参数会被保存到内部**DataFlash**中,会在每次上电时读取。**注意参数写入后,设备将需要几秒的时间重新初始化。**
- 5) Default 按钮:将界面上的参数修改为出厂默认的参数

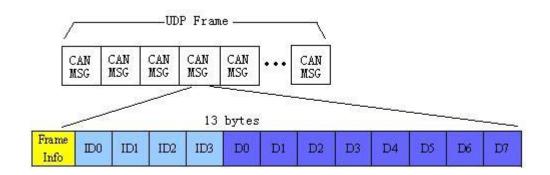
智能 CAN 转以太网适配器

产品数据手册

3.1.2 设备参数描述

智能 CAN 转以太网适配器

产品数据手册


CAN 波特率	BTR0(定时器 0)	BTR1(定时器 1)
5Kbps	0xBF	0xFF
10Kbps	0x31	0x1C
20Kbps	0x18	0x1C
40Kbps	0x87	0xFF
50Kbps	0x09	0x1C
80Kbps	0x83	0Xff
100Kbps	0x04	0x1C
125Kbps	0x03	0x1C
200Kbps	0x81	0xFA
250Kbps	0x01	0x1C
400Kbps	0x80	0xFA
500Kbps	0x00	0x1C
666Kbps	0x80	0xB6
800Kbps	0x00	0x16
1000Kbps	0x00	0x14

智能 CAN 转以太网适配器

产品数据手册

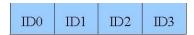
第四章 通信转换规约

4.1 转换格式规约

UDP/TCP-->CAN : 发送出去的 UDP 或 TCP 包

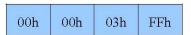
CAN-->UDP/TCP: 接收到的 UDP 或 TCP 包

1) 帧信息帧信息 Frame Info: 一个字节,该字节的 bit 定义如下


Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
FF	RTR	保留	保留	DLC3	DLC2	DLC1	DLC0

FF: 标准帧和扩展帧的标识, 0 为标准帧, 1 为扩展帧。

RTR: 远程帧和数据帧的标识, 0 为数据帧, 1 为远程帧。


DLC3~DLC0: 标识该 CAN 消息帧中的有效数据长度,最多 8 个。

2) ID 域

CAN 消息帧的 ID 填充域, 共 4 个字节。当为标准帧的时候, 占用后 2 个字节。只有 ID0, ID1, 以及 ID2 的高 5 位无效, 补 0。

举例: 当 ID=0x03FF 的时候,按如下方式填充。

当为扩展帧的时候,占用 4 个字节。ID0 的高 3 位无效,补 0。

举例: 当 ID=0x12345678 的时候, 按如下方式填充

|--|

智能 CAN 转以太网适配器

产品数据手册

3)数据域

根据 CAN 消息的定义,一个 CAN 帧中,最多可以包含 8 个字节的数据。当该 CAN 帧不需要 8 个字节的时候,余下的字节补 0。

注意:需要在 FrameInfo 字节中指明有效数据个数。举例: FrameInfo 中的 DLC3-0 =8,表明有 8 个数据有效时,按如下表示

FrameInfo 中的 DLC3-0 = 6, 表明有 6 个数据有效时, 按如下表示

11h	22h	33h	44h	55h	66h	00h	00h

4) CAN 消息帧举例

以下例子是一个扩展格式的数据帧, ID 为 0x12345678, 包含 8 个数据字节,数据为 (11h,22h,33h,44h,55h,66h,77h,88h) 的 CAN 帧的表示方式

88h 12h 34h 56h 78h 11h	22h 33h 44h	55h 66h 77h 88h
-------------------------	-------------	-----------------

以下例子是一个标准数据帧,ID 为 0x3ff, 包含 6 个数据字节,数据为 (11h,22h,33h,44h,55h,66h) 的 CAN 帧的表示方式

06h 00h 00h 03h ffh 11h 22h 33h 44h 55h 66h 00h 00h	06h	00 h	00h	03h	ffh	11h	22h	33h	44h	55h	66h	00 h	00h
---	-----	-------------	-----	-----	-----	-----	-----	-----	-----	-----	-----	-------------	-----

4.2 设备通讯示例

将 CANUSB 模块的 CAN 连接到 MCANET 的 CAN, MCANET 通过以太网连接到电脑, PC 运行 CANSUB 测试软件和 MCANET 的测试软件,以 CAN0 为例, CAN1 相同。

智能 CAN 转以太网适配器

产品数据手册

CANO 设置为 UDP 模式 备注: PC 的 IP 地址设置为下图的: 192.168.1.55

- (1) CAN 帧:扩展帧、数据帧、ID 为 0x12345678 , 包含 8 个数据字节,数据为 (11h,22h,33h,44h,55h,66h,77h,88h)
- (2) UDP 网络数据包: 88 12 34 56 78 11 22 33 44 55 66 77 88
- (3) CANUSB 设备通过测试软件发送和接收:

(4) MCANET 模块通过网络调试助手发送和接受:

智能 CAN 转以太网适配器

产品数据手册

CANO 设置为 TCP 模式

- (1) CAN 帧: 标准帧、数据帧, ID 为 0x3FF, 包含 6 个数据字节, 数据为(11h, 22h, 33h, 44h, 55h, 66h)
- (2) TCP 网络数据包: 06 00 00 03 FF 11 22 33 44 55 66 00 00
- (3) CANUSB 设备通过测试软件发送和接收:

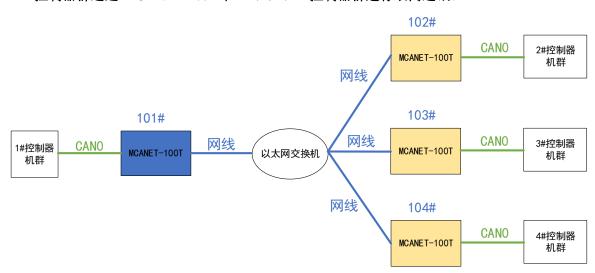
(4) MCANET 模块通过网络调试助手发送和接受:

智能 CAN 转以太网适配器

产品数据手册

4.3 多机通讯配置

在某些场合需要实现多个模块的透明传输,设置参考如下:



智能 CAN 转以太网适配器

产品数据手册

2.1 主从应用

1#控制器群通过 MCANET-100T 和 2#、3#、4#控制器群进行双向通讯。

2.2 主从应用配置

CAN0工作模式: UDP(固定)

主模块

主机IP: 255.255.255.255(固定)

主机端口: 4000 (所有从模块的设备端口号)

设备IP: 192.168.1.101

设备端口: 4800 (主模块设备端口号)

从模块1

主机IP: 255.255.255.255(固定)

主机端口: 4800(主模块设备端口号)

设备IP: 192.168.1.102

设备端口: 4000 (所有从模块的设备端口号)

从模块2

主机IP: 255.255.255.255(固定)

主机端口: 4800(主模块设备端口号)

设备IP: 192.168.1.103

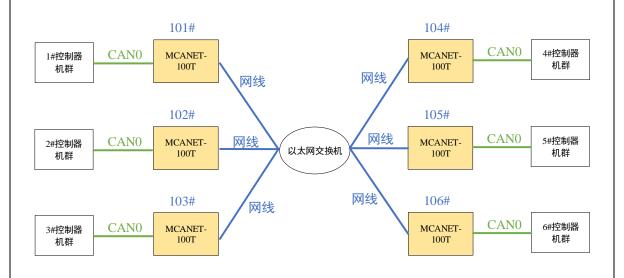
设备端口: 4000 (所有从模块的设备端口号)

从模块X

主机IP: 255.255.255.255(固定)

主机端口: 4800(主模块设备端口号)

设备IP: 192.168.1.10X


设备端口: 4000 (所有从模块的设备端口号)

智能 CAN 转以太网适配器

产品数据手册

3.1 多主应用

1#、2#、3#控制器群通过 MCANET-100T 和 3#、4#、5#控制器群进行双向通讯。

3.2 多主应用配置

模块1

CAN0工作模式: UDP(固定)

模块4

主机IP: 255.255.255.255(固定) 主机端口: 4000 (固定) 设备IP: 192.168.1.101 设备端口: 4000 (固定)

主机端口: 4000 (固定) 设备IP: 192.168.1.104 设备端口: 4000 (固定)

主机IP: 255.255.255.255(固定)

模块2

主机IP: 255.255.255.255(固定) 主机端口: 4000 (固定) 设备IP: 192.168.1.102

设备端口: 4000 (固定)

模块5

主机IP: 255.255.255.255(固定) 主机端口: 4000(固定) 设备IP: 192.168.1.105 设备端口: 4000(固定)

模块3

主机IP: 255.255.255.255(固定) 主机端口: 4000(固定) 设备IP: 192.168.1.103 设备端口: 4000(固定)

模块6

主机IP: 255.255.255.255(固定) 主机端口: 4000(固定) 设备IP: 192.168.1.106 设备端口: 4000(固定)

智能 CAN 转以太网适配器

产品数据手册

附 录

表 1-1 系列配套产品一览表

产品类型	型号	简介
	CANCOM-100T	智能串口 CAN 转换器
	CANUSB-I	单路智能 USB 转 CAN 接口卡
	CANUSB-II	双路智能 USB 转 CAN 接口卡
	CANET-I	单路智能 CAN 转以太网接口卡
	CANET-II	双路智能 CAN 转以太网接口卡
CAN 接口卡	MCANET-100T	单路智能 CAN 转以太网接口卡
	MCANET-200T	双路智能 CAN 转以太网接口卡
	PCI-5810I	单路智能 PCI 转 CAN 接口卡
	PCI-5820I	双路智能 PCI 转 CAN 接口卡
	PCIECAN-100T	单路智能 PCIE 转 CAN 接口卡
	PCIECAN-200T	双路智能 PCIE 转 CAN 接口卡
CAN 中继及交换	CANBridge-200T	高速智能 CAN 网桥
机	CANSW-400T	高速智能 CAN 交换机
	CANFIB-100PT	高速智能 CAN 光纤转换器(点对点)
光纤中继及交换机	CANFIB-100BT	高速智能 CAN 光纤转换器(总线式)
	CANFIB-Mixed	高速智能 CAN 光纤交换机